Generators for the Euclidean Picard Modular Groups
نویسنده
چکیده
The goal of this article is to show that five explicitly given transformations, a rotation, two screw Heisenberg rotations, a vertical translation and an involution generate the Euclidean Picard modular groups with coefficient in the Euclidean ring of integers of a quadratic imaginary number field. We also obtain a presentation of the isotropy subgroup fixing infinity by analysis of the combinatorics of the fundamental domain in the Heisenberg group.
منابع مشابه
Generators of a Picard Modular Group in Two Complex Dimensions
The goal of the article is to prove that four explicitly given transformations, two Heisenberg translations, a rotation and an involution generate the Picard modular group with Gaussian integers acting on the two dimensional complex hyperbolic space. The result answers positively a question raised by A. Kleinschmidt and D. Persson.
متن کاملInvariants of some compactified Picard modular surfaces and applications
The paper investigates invariants of compactified Picard modular surfaces by principal congruence subgroups of Picard modular groups. The applications to the surface classification and modular forms are also discussed.
متن کاملDimension Formulas for Automorphic Forms of Coabelian Hyperbolic Type
There are infinitely many hyperbolic transforms of complex abelian surfaces. The corresponding universal covers change from the complex plane to the unit ball, from flat to hyperbolic metrics. Looking back to Jacobi’s periodic functions we were able to construct 2-dimensional abelian functions transformable to automorphic forms on the ball. In this article we prove explicit dimension formulas f...
متن کاملElliptic points of the Picard modular group
We explicitly compute the elliptic points and isotropy groups for the action of the Picard modular group over the Gaussian integers on 2-dimensional complex hyperbolic space.
متن کاملA Micropower Current-Mode Euclidean Distance Calculator for Pattern Recognition
In this paper a new synthesis for circuit design of Euclidean distance calculation is presented. The circuit is implemented based on a simple two-quadrant squarer/divider block. The circuit that employs floating gate MOS (FG-MOS) transistors operating in weak inversion region, features low circuit complexity, low power (<20uW), low supply voltage (0.5V), two quadrant input current, wide dyn...
متن کامل